The Mars and Venus Effect: The Influence of User Gender on the Effectiveness of Adaptive Task Support
نویسندگان
چکیده
Providing adaptive support to users engaged in learning tasks is the central focus of intelligent tutoring systems. There is evidence that female and male users may benefit differently from adaptive support, yet it is not understood how to most effectively adapt task support to gender. This paper reports on a study with four versions of an intelligent tutoring system for introductory computer programming offering different levels of cognitive (conceptual and problem-solving) and affective (motivational and engagement) support. The results show that female users reported significantly more engagement and less frustration with the affective support system than with other versions. In a human tutorial dialogue condition used for comparison, a consistent difference was observed between females and males. These results suggest the presence of the Mars and Venus Effect, a systematic difference in how female and male users benefit from cognitive and affective adaptive support. The findings point toward design principles to guide the development of gender-adaptive intelligent tutoring systems.
منابع مشابه
Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملAnalysis of the dimensions of the use of search tactics with emphasis on user characteristics and simulated search tasks based on the Anderson and Crasswell classification scheme
Purpose: The purpose of this study is to identify the frequency and time spent in the use of search tactics and the effect of user characteristics and type of search task on the use of search tactics. Methodology: A quantitative approach based on data obtained from Morayeh software used. Sample was 35 post graduate and graduate students majoring in humanities and engineering in Tehran. Four sea...
متن کاملPredicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)
Rutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep...
متن کاملESTIMATING DRYING SHRINKAGE OF CONCRETE USING A MULTIVARIATE ADAPTIVE REGRESSION SPLINES APPROACH
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying...
متن کامل